Supervised Q-walk for Learning Vector Representation of Nodes in Networks

نویسندگان

  • Naimish Agarwal
  • Gora Chand Nandi
چکیده

Automatic feature learning algorithms are at the forefront of modern day machine learning research. We present a novel algorithm, supervised Q-walk, which applies Q-learning to generate random walks on graphs such that the walks prove to be useful for learning node features suitable for tackling with the node classification problem. We present another novel algorithm, k-hops neighborhood based confidence values learner, which learns confidence values of labels for unlabelled nodes in the network without first learning the node embedding. These confidence values aid in learning an apt reward function for Q-learning. We demonstrate the efficacy of supervised Q-walk approach over existing state-of-the-art random walk based node embedding learners in solving the single / multi-label multi-class node classification problem using several real world datasets. Summarising, our approach represents a novel state-of-the-art technique to learn features, for nodes in networks, tailor-made for dealing with the node classification problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Semi-supervised Learning over Heterogeneous Information Networks by Ensemble of Meta-graph Guided Random Walks

Heterogeneous information network (HIN) is a general representation of many real world data. The difference between HIN and traditional homogeneous network is that the nodes and edges in HIN are with types. In many applications, we need to consider the types to make the decision more semantically meaningful. For annotationexpensive applications, a natural way is to consider semi-supervised lear...

متن کامل

Learning Graph Walk Based Similarity Measures for Parsed Text

We consider a parsed text corpus as an instance of a labelled directed graph, where nodes represent words and weighted directed edges represent the syntactic relations between them. We show that graph walks, combined with existing techniques of supervised learning, can be used to derive a task-specific word similarity measure in this graph. We also propose a new path-constrained graph walk meth...

متن کامل

Learning to Walk Structured Text Networks

We propose representing a text corpus as a labeled directed graph, where nodes represent words and weighted edges represent the syntactic relations between them, as derived by dependency parsing. Given this graph, we adopt a graph-based similarity measure based on random walks to derive a similarity measure between words, and also use supervised learning to improve the derived similarity measur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.00978  شماره 

صفحات  -

تاریخ انتشار 2017